esto significa que si, x y = k, entonces aquí k es siempre constante. Eso es cuando se dice que tanto x como y varían inversamente. Ahora vamos a entender el concepto de proporción inversa con la ayuda de una ecuación. En proporción inversa: x1 y1 = x2 y2. ¿Qué significa esto? Esto significa que si y1 e Y2 son los valores de Y correspondientes a los valores de x1 y x2 de x, respectivamente, entonces x1 y1 = x2 y2
¿cómo resolver problemas con variables inversamente proporcionales?,
de nuevo, hay dos métodos para resolver un problema con variables inversamente proporcionales.
Método 1
sabemos que en la proporción inversa,
x1 y1 = x2 y2 = x2 y2 = x2 y2 Y2
por lo tanto, cuando se le dice que resuelva este problema, siempre se le dará un par. Entonces, podemos usar la ecuación anterior, para encontrar los términos que son desconocidos para usar.
Método 2
sabemos que en la proporción inversa, x × y = k. esto significa que x = k/y. por lo tanto, para encontrar el valor de la k, puede usar los valores conocidos y luego usar la fórmula anterior para calcular todos los valores desconocidos., Ahora, vamos a entender esta situación con la ayuda de un ejemplo.
ejemplo: si 20 trabajadores pueden construir un muro en 48 horas, ¿cuántos trabajadores tendrán que hacer el mismo trabajo en 30 horas?
solución: deje que el número de trabajadores empleados para construir la pared en 30 horas Sea y. tenemos la siguiente tabla.,
Número de Horas | 48 | 30 |
Número de trabajadores | 20 | y |
Obviamente, más el número de trabajadores, más rápido van a construir el muro.por lo tanto, el número de horas y el número de trabajadores varían en proporción inversa.,>y=32 trabajadores
así que para terminar el trabajo en 30 horas, se requieren 32 trabajadores
puede descargar la hoja de trucos de proporciones directas e inversas haciendo clic en el botón de descarga a continuación
ejemplos resueltos para usted
pregunta 1: los siguientes son los cargos de estacionamiento cerca de un aeropuerto hasta
- 2 horas RS 60
- 6 horas Rs 100
- 12 horas RS 14
- 24 horas RS 180
compruebe si los cargos de estacionamiento están proporción directa al tiempo de estacionamiento.,
respuesta: sabemos que dos cantidades están en proporción directa si cada vez que los valores de una cantidad aumentan, entonces el valor de otra cantidad aumenta de tal manera que la relación de las cantidades permanece igual. Aquí, los cargos no están aumentando en proporción directa al tiempo de estacionamiento debido a 2/60 ≠ 6/100 ≠ 12/140 ≠ 24/180
pregunta 2: ¿Qué significa inversamente proporcional?
respuesta: se refiere a la relación entre dos variables en las que el producto es una constante.,Además, cuando una de las variables aumenta la otra disminuye en proporción para que el producto no cambia. Por ejemplo, si b es inversamente proporcional a A, entonces la ecuación está en la forma b = k / a, donde k es una constante.
pregunta 3: ¿Cuál es la diferencia entre la proporción directa y la inversa?
respuesta: en una proporción directa, la relación entre las cantidades coincidentes sigue siendo la misma si las dividimos. Por otro lado, en una proporción inversa o indirecta a medida que una cantidad aumenta, la otra disminuye automáticamente.
Pregunta 4: ¿establece la ecuación para la proporción inversa?,
respuesta: la ecuación para la proporción inversa es x Y = k O x = k/ y. por lo tanto, para encontrar el valor de la constante k, puede usar los valores conocidos y luego usar esta fórmula para calcular todos los valores desconocidos.
Pregunta 5: ¿proporcional significa igual?
respuesta: cuando algo es proporcional a cualquier otra cosa, significa que cambian entre sí y no significa que los valores sean iguales. Sin embargo, la constante de proporcionalidad sirve de multiplicador.