zákony termodynamiky jsou zdánlivě jednoduché státu, ale jsou dalekosáhlé v jejich následky. První zákon tvrdí, že pokud je teplo uznáno jako forma energie, pak je zachována celková energie systému plus jeho okolí; jinými slovy, celková energie vesmíru zůstává konstantní.
první zákon je uveden do činnosti zvážením toku energie přes hranici oddělující systém od jeho okolí., Zvažte klasický příklad plynu uzavřeného ve válci s pohyblivým pístem. Stěny válce působit jako hranice oddělující plynu uvnitř od světa venku, a pohyblivý píst poskytuje mechanismus pro plyn k práci tím, že rozšiřuje proti síle drží píst (předpokládá tření) v místě. Pokud plyn pracuje W, jak se rozšiřuje, a / nebo absorbuje teplo Q ze svého okolí stěnami válce, pak to odpovídá čistému toku energie W − Q přes hranici do okolí., V zájmu zachování celkové energie U, musí být vyvažující změna ΔU = Q − W (1) vnitřní energie plynu. První zákon stanoví jakýsi přísný systém energetického účetnictví, ve kterém změna energetického účtu (ΔU) se rovná rozdílu mezi vklady (Q) a výběry (W).
existuje důležitý rozdíl mezi množstvím ΔU a souvisejícími energetickými veličinami Q A W., Protože vnitřní energie U je charakterizován výhradně množství (či parametry), které jednoznačně určují stav systému v rovnováze, to je řekl, aby byl státní funkce taková, že žádné změny v oblasti energetiky je určena výhradně původní (i) a finále (f) stavů systému: ΔU = Uf − Ui. Q A W však nejsou Státní funkce. Stejně jako v příkladu prasknutí balonku, plynu uvnitř může dělat žádnou práci vůbec v dosažení jeho konečné rozbaleném stavu, nebo by to mohlo dělat maximum práce tím, že rozšíří ve válci s pohyblivým pístem k dosažení stejného konečného stavu., Vše, co je zapotřebí, je, že změna energie (ΔU) zůstává stejná. Analogicky lze stejnou změnu na bankovním účtu dosáhnout mnoha různými kombinacemi vkladů a výběrů. Q A W tedy nejsou Státní funkce, protože jejich hodnoty závisí na konkrétním procesu (nebo cestě) spojujícím stejné počáteční a konečné stavy. Stejně jako je smysluplnější hovořit o zůstatku na bankovním účtu než o jeho obsahu vkladu nebo výběru, je smysluplné mluvit pouze o vnitřní energii systému a nikoli o jeho obsahu tepla nebo práce.,
Z formálního matematického hlediska, inkrementální změna dU vnitřní energie je exaktní diferenciální (viz diferenciální rovnice), zatímco odpovídající dílčí změny d ‚QSKÉ a d‘ z. d v teplo a práce nejsou, protože integrálů, že tato množství jsou cesty závislé. Tyto pojmy lze využít k velké výhodě v přesné matematické formulaci termodynamiky (viz níže termodynamické vlastnosti a vztahy).,
Tepelné motory
klasický příklad tepelného motoru je parní stroj, i když všechny moderní motory se řídí stejnými zásadami. Parní stroje pracují cyklickým způsobem, přičemž píst se pohybuje nahoru a dolů jednou za každý cyklus. Horká vysokotlaká pára je přijímána do válce v první polovině každého cyklu a pak je dovoleno znovu uniknout ve druhé polovině. Celkovým efektem je vzít teplo Q1 generované spalováním paliva, aby se pára, převést část z toho dělat práci, a vyčerpat zbývající teplo Q2 do prostředí při nižší teplotě., Absorbovaná čistá tepelná energie je pak Q = Q1-Q2. Protože se motor vrací do původního stavu, jeho vnitřní energie U se nemění (ΔU = 0). Takže podle prvního zákona termodynamiky musí být práce provedená pro každý kompletní cyklus W = Q1-Q2. Jinými slovy, práce se provádí za každý celý cyklus je jen rozdíl tepla mezi Q1 vstřebává do motoru při vysoké teplotě a teplo Q2 vyčerpání při nižší teplotě. Síla termodynamiky spočívá v tom, že tento závěr je zcela nezávislý na podrobném pracovním mechanismu motoru., Spoléhá se pouze na celkovou úsporu energie, přičemž teplo je považováno za formu energie.
aby se ušetřily peníze na palivo a zabránilo se kontaminaci životního prostředí odpadním teplem, jsou motory navrženy tak, aby maximalizovaly přeměnu absorbovaného tepla Q1 na užitečnou práci a minimalizovaly odpadní teplo Q2. Účinnost Carnot (η) motoru je definována jako poměr W/Q1—tj. zlomek Q1, který je přeměněn na práci., Protože W = Q1 − Q2, účinnost může být také vyjádřena ve formě (2)
Pokud tam byly žádné odpadní teplo, pak Q2 = 0 a η = 1, což odpovídá 100% účinnosti. Zatímco snížení tření v motoru snižuje odpadní teplo, nikdy jej nelze vyloučit; proto existuje limit, jak může být malý Q2, a tedy jak velká může být účinnost. Toto omezení je základním přírodním zákonem-ve skutečnosti druhým termodynamickým zákonem (viz níže).